MATH 90 – CHAPTER 4

Solutions & Types of Systems

A <u>solution</u> to a <u>system of linear equations</u> is the set of points that make <u>BOTH</u> equations true at the same time.

Inconsistent	Consistent	Consistent
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓		· · · · · · · · · · · · · · · · · ·

Review Graphing Lines

Types of Linear Equations	Ways to Graph Lines		
Slope-Intercept From	1. Use y = mx + b		
	a. Graph the y-intercept point.		
Vertical Line	b. Use the slope = rise/run		
Horizontal Line	2. Make a table of 3 points		
	a. Pick an easy x value		
	b. Plug it in		
	c. Solve for the v value		

•

4.1 Conclusion

Solve a System by Graphing

- Graph both lines
- Find the point(s) of intersection
- Explain your solution
- Use graph paper or a ruler to graph carefully. Messy graphs will not reveal the correct solution.

4.2 The Substitution Method

Need To Know

- The idea of the substitution method
- The steps for the substitution method
- Apply

Idea of the Su	bstitution Method
x + y = 3 y = x + 5	 Goal 1. Turn two equations with two variables into one equation with one variable. 2. Solve to get one answer.
Steps for Substitution	
1	(i.e. get <i>x</i> or <i>y</i> by itself).
2the express	sion for the variable solve it.

- this answer 3.
- 4. Check your ordered pair in both equations.

Solve by Substitution Method

-5x + y = -1-2x + 3y = 10

Steps for Substitution

- 1. Get *x* or *y* by itself
- 2. Plug into the other equation and solve it.
- 3. Solve for other variable.

4. Check

4x + 2y = 3x = 4y - 3

Steps for Substitution

- Get *x* or *y* by itself
 Plug into the other
- equation and solve it.
- 3. Solve for other variable.
- 4. Check

Solve Two Variable Word Problems

The perimeter of a Lacrosse field is 340 yards. The length is 10 yd. less than twice the width. Find the length and the width.

Need To Know

- Review of the substitution method
- The idea of the elimination method
- The steps for the elimination method
- Apply

Revie	w Substitution - disadvantages
3 x + 5	5y = 4
-7x + 3	3y = 10

Steps for Elimination

- 1. Put equations in standard form and pick one variable to eliminate.
- 2. _____in one variable.
- 3. _____ and solve.
- 4. Plug in the first answer to find solution for the other variable.
- 5. Check your ordered pair in both equations.

Solve the System by Elimination

3x + 2y - 3 = 02x = -5y + 13 Steps for Elimination 1. Put in standard form

- 2. Set up opposites
- 3. Add equation & solve
- 4. Solve for other variable

5. Check

Solve the System by Elimination

$$\frac{1}{3}x + \frac{1}{2}y = 1$$
$$x + \frac{3}{4}y = 0$$

Steps for Elimination
 Put in standard form
 Set up opposites
 Add equation & solve
 Solve for other variable
 Check

Need To Know

- Overview of systems
- Recall guide lines to solve word problems
- Recall tools to solve problems
- Apply

Guide Lines to Solve Systems

Method	Strengths	Weaknesses
Graphing	•Solutions are visual	Imprecise if answers are fractionHard to graph big numbers
Substitution	 Solutions are always exact Easy to use if x or y is by itself. 	 Hard if equations yield fraction You can't visualize answer
Elimination	 Solutions are always exact Easy to use if decimals or fractions appear in system 	•You can't visualize answer

Guide Lines to Solve Problems

Blueprint for Solving

- 1. Read and understand the problem (# of unknowns)
- 2. Assign variables and write down the meaning of the variable
- 3. Write an equation
- 4. Solve the equation
- 5. Write down your answer using a complete sentence
- 6. Reread and check your solution

Tools to Reveal the Equation

- 1. Use keywords
- 2. Draw a picture
- Make up a simpler problem
 Make tables of numbers
- and look for patterns
- 5. Use charts to organize your information
- 6. Make a guess
- 7. Use a verbal model

How many of each type did they make.

pply

Zoo prices are \$6 for adults and \$3 for children. On a cold day they collected \$1554 from 394 admissions. How many were adults and how many children?

5. State answer Tools 1. Keywords 2. Drawing 3. Simpler problem 4. Tables/Patterns 5. Charts 6. Guess 7. Verbal Model **Steps** 1. Familiarize 2. Translate 3. Carry out 4. Check 5. State answer

Steps

<u>Tools</u> 1. Keywords 2. Drawing 3. Simpler problem 4. Tables/Patterns 5. Charts 6. Guess 7. Verbal Model

Café Europa mixes Brazilian coffee worth \$19 per kg 4. Check and Turkish coffee worth \$22 per kg. 5. State answer

The new batch needs to be 300-kg costing \$20 per kg. How much of each type must be mixed?

	Brazilian	Turkish	Europa's
Num of kg of Beans			
Price			
Cost of Beans			

pply

<u>Steps</u> 1. Familiarize 2. Translate

Carry out
 Check

5. State answer

An experiment requires 200 ml of a 68% acid solution. The only solutions available are 50% ^{5.} acid and 80% acid. How much of each do we mix?

	50%	80%	68%
Amount of Solution			
% Strength			
Amount of Acid			

<u>Tools</u>
1. Keywords
2. Drawing
3. Simpler problem
4. Tables/Patterns
5. Charts
6. Guess
7. Verbal Model

Need To Know

3

2

1

5 - 4 - 3 - 2 - 2

= x

The solutions

- Contrast Between Graphing: a System and a Linear Equation.
- Solving Linear Equations from Graphs.
- Making Graphs to Solve Linear Equations.

Compare and Contrast – What is different about the 2nd problem?

x

Estimate the solution of each from the graph.

